3.2393 \(\int \frac{(1-2 x)^{5/2} \sqrt{3+5 x}}{(2+3 x)^2} \, dx\)

Optimal. Leaf size=135 \[ -\frac{\sqrt{5 x+3} (1-2 x)^{5/2}}{3 (3 x+2)}-\frac{1}{3} \sqrt{5 x+3} (1-2 x)^{3/2}-\frac{43}{30} \sqrt{5 x+3} \sqrt{1-2 x}-\frac{2119 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )}{90 \sqrt{10}}-\frac{35}{9} \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right ) \]

[Out]

(-43*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/30 - ((1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/3 - ((1 - 2*x)^(5/2)*Sqrt[3 + 5*x])/(3*
(2 + 3*x)) - (2119*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/(90*Sqrt[10]) - (35*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]
*Sqrt[3 + 5*x])])/9

________________________________________________________________________________________

Rubi [A]  time = 0.0523529, antiderivative size = 135, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.269, Rules used = {97, 154, 157, 54, 216, 93, 204} \[ -\frac{\sqrt{5 x+3} (1-2 x)^{5/2}}{3 (3 x+2)}-\frac{1}{3} \sqrt{5 x+3} (1-2 x)^{3/2}-\frac{43}{30} \sqrt{5 x+3} \sqrt{1-2 x}-\frac{2119 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )}{90 \sqrt{10}}-\frac{35}{9} \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((1 - 2*x)^(5/2)*Sqrt[3 + 5*x])/(2 + 3*x)^2,x]

[Out]

(-43*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/30 - ((1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/3 - ((1 - 2*x)^(5/2)*Sqrt[3 + 5*x])/(3*
(2 + 3*x)) - (2119*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/(90*Sqrt[10]) - (35*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]
*Sqrt[3 + 5*x])])/9

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{5/2} \sqrt{3+5 x}}{(2+3 x)^2} \, dx &=-\frac{(1-2 x)^{5/2} \sqrt{3+5 x}}{3 (2+3 x)}+\frac{1}{3} \int \frac{\left (-\frac{25}{2}-30 x\right ) (1-2 x)^{3/2}}{(2+3 x) \sqrt{3+5 x}} \, dx\\ &=-\frac{1}{3} (1-2 x)^{3/2} \sqrt{3+5 x}-\frac{(1-2 x)^{5/2} \sqrt{3+5 x}}{3 (2+3 x)}+\frac{1}{90} \int \frac{(-765-1935 x) \sqrt{1-2 x}}{(2+3 x) \sqrt{3+5 x}} \, dx\\ &=-\frac{43}{30} \sqrt{1-2 x} \sqrt{3+5 x}-\frac{1}{3} (1-2 x)^{3/2} \sqrt{3+5 x}-\frac{(1-2 x)^{5/2} \sqrt{3+5 x}}{3 (2+3 x)}+\frac{\int \frac{-13410-\frac{95355 x}{2}}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx}{1350}\\ &=-\frac{43}{30} \sqrt{1-2 x} \sqrt{3+5 x}-\frac{1}{3} (1-2 x)^{3/2} \sqrt{3+5 x}-\frac{(1-2 x)^{5/2} \sqrt{3+5 x}}{3 (2+3 x)}-\frac{2119}{180} \int \frac{1}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx+\frac{245}{18} \int \frac{1}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx\\ &=-\frac{43}{30} \sqrt{1-2 x} \sqrt{3+5 x}-\frac{1}{3} (1-2 x)^{3/2} \sqrt{3+5 x}-\frac{(1-2 x)^{5/2} \sqrt{3+5 x}}{3 (2+3 x)}+\frac{245}{9} \operatorname{Subst}\left (\int \frac{1}{-7-x^2} \, dx,x,\frac{\sqrt{1-2 x}}{\sqrt{3+5 x}}\right )-\frac{2119 \operatorname{Subst}\left (\int \frac{1}{\sqrt{11-2 x^2}} \, dx,x,\sqrt{3+5 x}\right )}{90 \sqrt{5}}\\ &=-\frac{43}{30} \sqrt{1-2 x} \sqrt{3+5 x}-\frac{1}{3} (1-2 x)^{3/2} \sqrt{3+5 x}-\frac{(1-2 x)^{5/2} \sqrt{3+5 x}}{3 (2+3 x)}-\frac{2119 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{3+5 x}\right )}{90 \sqrt{10}}-\frac{35}{9} \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{3+5 x}}\right )\\ \end{align*}

Mathematica [A]  time = 0.121085, size = 122, normalized size = 0.9 \[ \frac{-30 \sqrt{5 x+3} \left (40 x^3-178 x^2-153 x+116\right )+2119 \sqrt{10-20 x} (3 x+2) \sin ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )-3500 \sqrt{7-14 x} (3 x+2) \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{900 \sqrt{1-2 x} (3 x+2)} \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - 2*x)^(5/2)*Sqrt[3 + 5*x])/(2 + 3*x)^2,x]

[Out]

(-30*Sqrt[3 + 5*x]*(116 - 153*x - 178*x^2 + 40*x^3) + 2119*Sqrt[10 - 20*x]*(2 + 3*x)*ArcSin[Sqrt[5/11]*Sqrt[1
- 2*x]] - 3500*Sqrt[7 - 14*x]*(2 + 3*x)*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(900*Sqrt[1 - 2*x]*(2 +
 3*x))

________________________________________________________________________________________

Maple [A]  time = 0.012, size = 163, normalized size = 1.2 \begin{align*} -{\frac{1}{3600+5400\,x}\sqrt{1-2\,x}\sqrt{3+5\,x} \left ( 6357\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ) x-10500\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) x-1200\,{x}^{2}\sqrt{-10\,{x}^{2}-x+3}+4238\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ) -7000\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) +4740\,x\sqrt{-10\,{x}^{2}-x+3}+6960\,\sqrt{-10\,{x}^{2}-x+3} \right ){\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(5/2)*(3+5*x)^(1/2)/(2+3*x)^2,x)

[Out]

-1/1800*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(6357*10^(1/2)*arcsin(20/11*x+1/11)*x-10500*7^(1/2)*arctan(1/14*(37*x+20)*
7^(1/2)/(-10*x^2-x+3)^(1/2))*x-1200*x^2*(-10*x^2-x+3)^(1/2)+4238*10^(1/2)*arcsin(20/11*x+1/11)-7000*7^(1/2)*ar
ctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+4740*x*(-10*x^2-x+3)^(1/2)+6960*(-10*x^2-x+3)^(1/2))/(-10*x^2
-x+3)^(1/2)/(2+3*x)

________________________________________________________________________________________

Maxima [A]  time = 3.26063, size = 122, normalized size = 0.9 \begin{align*} \frac{2}{9} \, \sqrt{-10 \, x^{2} - x + 3} x - \frac{2119}{1800} \, \sqrt{10} \arcsin \left (\frac{20}{11} \, x + \frac{1}{11}\right ) + \frac{35}{18} \, \sqrt{7} \arcsin \left (\frac{37 \, x}{11 \,{\left | 3 \, x + 2 \right |}} + \frac{20}{11 \,{\left | 3 \, x + 2 \right |}}\right ) - \frac{277}{270} \, \sqrt{-10 \, x^{2} - x + 3} - \frac{49 \, \sqrt{-10 \, x^{2} - x + 3}}{27 \,{\left (3 \, x + 2\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^(1/2)/(2+3*x)^2,x, algorithm="maxima")

[Out]

2/9*sqrt(-10*x^2 - x + 3)*x - 2119/1800*sqrt(10)*arcsin(20/11*x + 1/11) + 35/18*sqrt(7)*arcsin(37/11*x/abs(3*x
 + 2) + 20/11/abs(3*x + 2)) - 277/270*sqrt(-10*x^2 - x + 3) - 49/27*sqrt(-10*x^2 - x + 3)/(3*x + 2)

________________________________________________________________________________________

Fricas [A]  time = 1.61052, size = 383, normalized size = 2.84 \begin{align*} -\frac{3500 \, \sqrt{7}{\left (3 \, x + 2\right )} \arctan \left (\frac{\sqrt{7}{\left (37 \, x + 20\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{14 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) - 2119 \, \sqrt{10}{\left (3 \, x + 2\right )} \arctan \left (\frac{\sqrt{10}{\left (20 \, x + 1\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{20 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) - 60 \,{\left (20 \, x^{2} - 79 \, x - 116\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{1800 \,{\left (3 \, x + 2\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^(1/2)/(2+3*x)^2,x, algorithm="fricas")

[Out]

-1/1800*(3500*sqrt(7)*(3*x + 2)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3))
 - 2119*sqrt(10)*(3*x + 2)*arctan(1/20*sqrt(10)*(20*x + 1)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3)) - 60
*(20*x^2 - 79*x - 116)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(3*x + 2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(5/2)*(3+5*x)**(1/2)/(2+3*x)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.90075, size = 394, normalized size = 2.92 \begin{align*} \frac{7}{36} \, \sqrt{70} \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{70} \sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} + \frac{1}{1350} \,{\left (12 \, \sqrt{5}{\left (5 \, x + 3\right )} - 313 \, \sqrt{5}\right )} \sqrt{5 \, x + 3} \sqrt{-10 \, x + 5} - \frac{2119}{1800} \, \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{4 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} - \frac{1078 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}}{27 \,{\left ({\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{2} + 280\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^(1/2)/(2+3*x)^2,x, algorithm="giac")

[Out]

7/36*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))^2/(5
*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) + 1/1350*(12*sqrt(5)*(5*x + 3) - 313*sqrt(5))*sqrt(5*x + 3
)*sqrt(-10*x + 5) - 2119/1800*sqrt(10)*(pi + 2*arctan(-1/4*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))
^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 1078/27*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(2
2))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(22
))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^2 + 280)